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Derivation of the macroscopic continuum equations for multiphase flow
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Macroscopic continuum equations for multiphase flow are derived from a modified Boltzmann equation
using the Chapman-Enskog expansion technique. Phase separation and interface formation are naturally driven
by an intermolecular interaction. At the equilibrium state, these equations reduce to previous results of ther-
modynamical studies. This work provides a solid physical foundation for the continuum descriptions of surface
tension and will be useful for studying multiphase flg81063-651X99)03601-§

PACS numbsgs): 47.55.Kf, 05.20.Dd, 05.60.Cd, 05.70.Ln

Numerical simulation of multiphase flow is of great sig- MO = k[ (V0|24 0V20) — VoV 3
nificance in both fundamental research and industrial appli- <L zIVpl*+pV7p) PVPl @
cations. The most challenging part in simulation of multi- where the parameter controls the strength of the surface

phase flows is to model interfaces between different phasggnsion effect. The temperature in the equation of state is
and the associated surface tensions. One of the commonfiked for simplicity.

used approaches, which will be specifically addressed in this The direct insertion of the stress tensbf® into the

paper, is the front capturing technique. _ Navier-Stokes equations is somewhat phenomenological be-
In the front capturing technique an interface is regarded agayse it is based on theuilibrium state(see, e.g.[4]). To

a transient region where physical properties vary signifiive a solid foundation to the equations, we will show in this

cantly but still smoothly. In other words, the interface itself naper that the continuum equatiafls and(2) indeed can be

is treated as a part of the flow domain. The front capturingjirectly derived from the kinetic theory. Therefore, they are

has been successfully applied to capture the shock ve®ee  yajid for describing multiphase flows.

e.g., the review in1]), in which flow is governed by the Swift etal. [5] also introduced a lattice-Boltzmann

same Euler equation throughout the whole flow field. Whemghstnagar-Gross-KrookBGK) model [6] to account for

the same idea is used to study multiphase flows, the Eulgfqyid-gas mixture. The resulting macroscopic equation has

and Navier-Stokes equations are no longer valid becausgyms in the stress tensor similar to thatHY. In their

flow in an interface region evolves quite differently from paper the equilibrium distribution was constructed to be con-

those in the homogeneous region due to the existence Qfstent with the thermodynamical theory of nonuniform flu-

surface tension. _ ids at equilibrium state. For an idea gas, the validation of the
In the literature several techniques have been prop@ed BGK model can be justified by the recovery of the

for incorporation of the surface tension effect into the Eulergqj;mann-BGK equation to the Navier-Stokes equation un-

or Navier-Stokes equations. Most of these approaches stajer the Chapman-Enskog expansion. For a multiphase fluid,

from phenomenological reasonings: An interface is artifi-nowever, there is na priori macroscopic equation that can

cially smeared into a transient region with a finite thicknessye ysed. Whether the BGK model is correct for multiphase

and the surface tension is subsequently converted into &fyy remains unproved in their paper. This paper fills such a

effective volumetric force. A common difficulty in these ap- gap.

proaches is how to calculate correctly the curvature of an' \ye start our analysis from the Boltzmann equation

interface, which the volumetric force is proportional to. Pre-

vious studies usually introduced an artificial label function to R

describe the interface and the associated curvature. Even if G TEVIFRVi=—", 4)

the curvature can be accurately calculated, there is still no

rigorous way to convert the surface tension into the correwheref is the single-particle distribution function for a one-

sponding volumetric force. chemical-component systeng, is the microscopic particle

Recently, Nadiga and ZalesKs] proposed the following yelocity, F is the force experienced by molecules, itV ot
continuum equations for the multiphase flow by directly in-js the collision term as used [7].

serting a new stress tensor into the momentum equation: The same Boltzmann equation is valid for general fluids,
P but there are two important facts that must be taken into
—p+V-(pu):0, (1)  account[8]. First, the collision termd,f/t needs to be
at modified because the particle size becomes comparable to

the free path of molecules for a dense gas or a liquid. Sec-

dpu ond, the intermolecular attraction may become important es-
ot TV (pun)==Vp+Vv: ne+v.n®, @ pecially for fluids involved in phase separations and transi-
tions such as multiphase flows.
whereIl® is the ordinary viscous stress tensor dfd is a Based on Enskog’s elastic particle mof#), the collision
new term representing the surface tension effect term for a dense gas can be approximated as
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def ( 9f Following Chapman and Enskog, we expand the distribu-
at

W) —bpxfeY(£-u)-[V In(p’xT) tion function and time derivative in series of the Knudsen
0 number e (ratio of the mean free path to the macroscopic

+2(C2=5)V In T]+2[2CC:Vu+(C2— $)V -u]}, characteristic length

5 -
f=> " (13)

where @.f/dt), is the ordinary collision term when the par- n=0
ticle size can be neglecte@=(£—u)/\J2RT andC is its "
magnitude; the colon represents the scalar product of two o= 2 ng (14
tensors; andy is the increase in collision probability due to LA € Oty
increase in density,
The rest of the procedure of the Chapman-Enskog expansion
is straightforward. For simplicity, we focus only on the mass
and momentum conservations in this paper and neglect the
temperature variation. The first-order approximation yields

5
X=1+§bp+0.286€{bp)2

+0.1103bp)°+0.0386bp)* +- -+ , () the macroscopic equation
where drp+ V- (pu)=0, (15
2md®
b= T (7) é‘to(pu)-i-v-(pRﬂ +puu)+pVVy,

=—V(bp*xRT)+ kpVV?p, 16

with d andm being the diameter and mass of particles, re- (bp*xRT)* xp P (19

spectively. or

In Enskog’s original work, particles are assumed only to
experience external forces such as gravity or electromagnetic &to(pu) +V-(puu)=—Vp+xpVV?, (17

forces. In real dense gas, especially for those involved in

phase transitions, particles also experience intermolecular aivhere the pressure is related to the density and temperature
tractions. In the framework of the mean-field the¢®y, the by

intermolecular attraction can be modeled by the mean field

potential p=pRT(1+bpy)—ap?. (18)

Vim=—2ap—«V?p. (8  Equation(18) is the general equation of state for fluids.
The second-order Chapman-Enskog expansion leads to
The coefficienta and« relate to the intermolecular potential
Ugater DY 9, p=0, (19

1 —v.1mw
a:_z fr>d uattr(r)dry atl(pU) V H ! (20)
where
1
K=—% fr>dr2uam(r)dr. Y= x(Vu+uV) (21)

the viscous stress tensor. In our model, the intermolecular
traction does not change the viscosity that has been derived
y Enskog[7] for dense gases:

. i
They can be treated as constant parameters in the mod%i[
Ignoring the external forces, the total force experienced b)b
particles to be used in E¢4) can hence be expressed as

_ -1
F=—VV,. ) u=bp[(bpyx) ~+0.8+0.761bpx|pRT. (22

. . . . In practice, we can always measure the viscosity by experi-
The macroscopic fluid densify, velocity u, and temperature me?wts y y by €xp

T can be calculated as the velocity moments of the distribu- o ~ombination of the first- and second-order approxi-

tion function mations of the Chapman-Enskog expansion leads to the mac-
roscopic continuum equationd) and (2) for multiphase

p:J f dg, (10)  flows. Notice that the following equation is used in this pro-
cedure:
pu= [ & oz 1) kpVVPp=V [(3[Vp|*+pV?p)I = VpVpl=V I
(23

. 2 Two remarks are due at this point. First, at the equilib-
3pRT_f (§-w?f dé. (12) rium, the momentum equatidi2) reduces to
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Vp=v.-IY. (24) where /) is the surface of) with outnormalS, «. is the
local curvature of the interface, is the normal direction of
Equation(24) is consistent with the thermodynamical resultsthe interface, and is the surface tension
for nonuniform fluids in an equilibrium stafd]. As shown
in classic thermodynamical studies, the phase separation is
driven by the intermolecular interaction through the equation o0
of state. U:Kf |Vpl?dz
Second, in our formulation, the interface is captured by o
the spatial distribution of density and the surface tension

effect is gutomatlcally distributed in space. No artificial as in[9]. Equations(24) and (25) yield the Laplace law.
smearing is necessary and calculation of the local curvature In conclusion, we have derived the macroscopic con-

is avoided. Th_e total force_ acting ona unl'(tl?rea of an .'nter'tinuum equations for multiphase flow from the microscopic
face can be given by the integration Bf II'*) over a thin

| Q aini Il vart of d interf ith Boltzmann equation using the Chapman-Enskog expansion
\;cr)el;r;? containing a smail part ot a curved interrace wi technique. Phase separation and interface formation are natu-

rally driven by intermolecular interaction. The resulting

1 equations are consistent with those proposed by Nadiga and
lim — J kpVV?p Zaleski[3]. This work provides a solid foundation for con-
A—o A tinuum descriptions of interfaces and surface tension effects
in multiphase flows.

1 2 .1 2
=lim — k(pV?p+3|Vp|°—VpVp) -Sdl
a0
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