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Derivation of the macroscopic continuum equations for multiphase flow
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Macroscopic continuum equations for multiphase flow are derived from a modified Boltzmann equation
using the Chapman-Enskog expansion technique. Phase separation and interface formation are naturally driven
by an intermolecular interaction. At the equilibrium state, these equations reduce to previous results of ther-
modynamical studies. This work provides a solid physical foundation for the continuum descriptions of surface
tension and will be useful for studying multiphase flow.@S1063-651X~99!03601-6#

PACS number~s!: 47.55.Kf, 05.20.Dd, 05.60.Cd, 05.70.Ln
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Numerical simulation of multiphase flow is of great si
nificance in both fundamental research and industrial ap
cations. The most challenging part in simulation of mu
phase flows is to model interfaces between different pha
and the associated surface tensions. One of the comm
used approaches, which will be specifically addressed in
paper, is the front capturing technique.

In the front capturing technique an interface is regarded
a transient region where physical properties vary sign
cantly but still smoothly. In other words, the interface its
is treated as a part of the flow domain. The front captur
has been successfully applied to capture the shock wave~see,
e.g., the review in@1#!, in which flow is governed by the
same Euler equation throughout the whole flow field. Wh
the same idea is used to study multiphase flows, the E
and Navier-Stokes equations are no longer valid beca
flow in an interface region evolves quite differently fro
those in the homogeneous region due to the existenc
surface tension.

In the literature several techniques have been propose@2#
for incorporation of the surface tension effect into the Eu
or Navier-Stokes equations. Most of these approaches
from phenomenological reasonings: An interface is art
cially smeared into a transient region with a finite thickne
and the surface tension is subsequently converted into
effective volumetric force. A common difficulty in these a
proaches is how to calculate correctly the curvature of
interface, which the volumetric force is proportional to. P
vious studies usually introduced an artificial label function
describe the interface and the associated curvature. Ev
the curvature can be accurately calculated, there is stil
rigorous way to convert the surface tension into the co
sponding volumetric force.

Recently, Nadiga and Zaleski@3# proposed the following
continuum equations for the multiphase flow by directly
serting a new stress tensor into the momentum equation

]r

]t
1“•~ru!50, ~1!

]ru

]t
1“•~ruu!52“p1“•P~v !1“•P~1!, ~2!

whereP(v) is the ordinary viscous stress tensor andP(1) is a
new term representing the surface tension effect
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P~1!5k@~ 1
2 u“ru21r¹2r!I2“r“r#, ~3!

where the parameterk controls the strength of the surfac
tension effect. The temperature in the equation of state
fixed for simplicity.

The direct insertion of the stress tensorP(1) into the
Navier-Stokes equations is somewhat phenomenological
cause it is based on theequilibrium state~see, e.g.,@4#!. To
give a solid foundation to the equations, we will show in th
paper that the continuum equations~1! and~2! indeed can be
directly derived from the kinetic theory. Therefore, they a
valid for describing multiphase flows.

Swift et al. @5# also introduced a lattice-Boltzman
Bhatnagar-Gross-Krook~BGK! model @6# to account for
liquid-gas mixture. The resulting macroscopic equation h
terms in the stress tensor similar to that inP(1). In their
paper the equilibrium distribution was constructed to be c
sistent with the thermodynamical theory of nonuniform fl
ids at equilibrium state. For an idea gas, the validation of
BGK model can be justified by the recovery of th
Boltzmann-BGK equation to the Navier-Stokes equation
der the Chapman-Enskog expansion. For a multiphase fl
however, there is noa priori macroscopic equation that ca
be used. Whether the BGK model is correct for multipha
flow remains unproved in their paper. This paper fills suc
gap.

We start our analysis from the Boltzmann equation

] f

]t
1j•“ f 1F•“j f 5

]ef

]t
, ~4!

where f is the single-particle distribution function for a one
chemical-component system,j is the microscopic particle
velocity,F is the force experienced by molecules, and]ef /]t
is the collision term as used in@7#.

The same Boltzmann equation is valid for general flui
but there are two important facts that must be taken i
account @8#. First, the collision term]ef /]t needs to be
modified because the particle size becomes comparab
the free path of molecules for a dense gas or a liquid. S
ond, the intermolecular attraction may become important
pecially for fluids involved in phase separations and tran
tions such as multiphase flows.

Based on Enskog’s elastic particle model@7#, the collision
term for a dense gas can be approximated as
1253 ©1999 The American Physical Society
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]ef

]t
5S ]ef

]t D
0

2brx f eq$~j2u!•@“ ln~r2xT!

1 3
5 ~C22 5

2 !“ ln T#1 2
5 @2CC:“u1~C22 5

2 !“•u#%,

~5!

where (]ef /]t)0 is the ordinary collision term when the pa
ticle size can be neglected;C5(j2u)/A2RT and C is its
magnitude; the colon represents the scalar product of
tensors; andx is the increase in collision probability due t
increase in density,

x511
5

8
br10.2869~br!2

10.1103~br!310.0386~br!41¯ , ~6!

where

b5
2pd3

3m
, ~7!

with d and m being the diameter and mass of particles,
spectively.

In Enskog’s original work, particles are assumed only
experience external forces such as gravity or electromagn
forces. In real dense gas, especially for those involved
phase transitions, particles also experience intermolecula
tractions. In the framework of the mean-field theory@9#, the
intermolecular attraction can be modeled by the mean fi
potential

Vm522ar2k¹2r. ~8!

The coefficientsa andk relate to the intermolecular potentia
uattr by

a52
1

2 E
r .d

uattr~r !dr ,

k52
1

6 E
r .d

r 2uattr~r !dr .

They can be treated as constant parameters in the m
Ignoring the external forces, the total force experienced
particles to be used in Eq.~4! can hence be expressed as

F52“Vm . ~9!

The macroscopic fluid densityr, velocity u, and temperature
T can be calculated as the velocity moments of the distri
tion function

r5E f dj, ~10!

ru5E jf dj, ~11!

3rRT5E ~j2u!2f dj. ~12!
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Following Chapman and Enskog, we expand the distri
tion function and time derivative in series of the Knuds
numbere ~ratio of the mean free path to the macroscop
characteristic length!:

f 5 (
n50

`

enf n, ~13!

] t5 (
n50

`

en] tn
. ~14!

The rest of the procedure of the Chapman-Enskog expan
is straightforward. For simplicity, we focus only on the ma
and momentum conservations in this paper and neglect
temperature variation. The first-order approximation yie
the macroscopic equation

] t0
r1“•~ru!50, ~15!

] t0
~ru!1“•~rRTI1ruu!1r“Vm

52“~br2xRT!1kr“¹2r, ~16!

or

] t0
~ru!1“•~ruu!52“p1kr“¹2r, ~17!

where the pressure is related to the density and tempera
by

p5rRT~11brx!2ar2. ~18!

Equation~18! is the general equation of state for fluids.
The second-order Chapman-Enskog expansion leads

] t1
r50, ~19!

] t1
~ru!5“•P~v !, ~20!

where

P~v !5m~“u1u“ ! ~21!

is the viscous stress tensor. In our model, the intermolec
attraction does not change the viscosity that has been der
by Enskog@7# for dense gases:

m5br@~brx!2110.810.7614brx#rRT. ~22!

In practice, we can always measure the viscosity by exp
ments.

The combination of the first- and second-order appro
mations of the Chapman-Enskog expansion leads to the m
roscopic continuum equations~1! and ~2! for multiphase
flows. Notice that the following equation is used in this pr
cedure:

kr“¹2r5k“•@~ 1
2 u“ru21r¹2r!I2“r“r#5“•P~1!.

~23!

Two remarks are due at this point. First, at the equil
rium, the momentum equation~2! reduces to
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“p5“•P~1!. ~24!

Equation~24! is consistent with the thermodynamical resu
for nonuniform fluids in an equilibrium state@4#. As shown
in classic thermodynamical studies, the phase separatio
driven by the intermolecular interaction through the equat
of state.

Second, in our formulation, the interface is captured
the spatial distribution of density and the surface tens
effect is automatically distributed in space. No artific
smearing is necessary and calculation of the local curva
is avoided. The total force acting on a unit area of an int
face can be given by the integration of“•P(1) over a thin
volumeV containing a small part of a curved interface wi
areaA:

lim
A→0

1

A E
V

kr“¹2r

5 lim
A→0

1

A E
]V

k~r¹2r1 1
2 u“ru22“r“r!•S dl

5skcn, ~25!
ys
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where ]V is the surface ofV with outnormalS, kc is the
local curvature of the interface,n is the normal direction of
the interface, ands is the surface tension

s5kE
2`

`

u“ru2dz,

as in @9#. Equations~24! and ~25! yield the Laplace law.
In conclusion, we have derived the macroscopic co

tinuum equations for multiphase flow from the microscop
Boltzmann equation using the Chapman-Enskog expan
technique. Phase separation and interface formation are n
rally driven by intermolecular interaction. The resultin
equations are consistent with those proposed by Nadiga
Zaleski @3#. This work provides a solid foundation for con
tinuum descriptions of interfaces and surface tension effe
in multiphase flows.
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